[特集]

「角波」の送風散水試験 試験結果報告

一般社団法人 日本金属屋根協会・技術委員会

建築分野では、圧力箱を使用し、静的荷重を加えながら 水密性や耐風圧性試験を実施することが、一般的な評価方 法として広く知られている。これら試験方法は JIS 規格等 に定められている。しかし、実際の風雨を考えた場合に、 動圧の影響は非常に大きく、静的荷重試験では再現できな い部分も多い。*1

今回、一般財団法人 建材試験センター 中央試験所に新 たに導入された大型送風散水試験装置では、吹き出し口か ら直接実風が送風され、実際の風に近い状態を再現するこ とが可能である。

そこで、一般社団法人 日本金属屋根協会・技術委員会 では「角波」外壁の防水性能に関し、

- a) 従来の圧力箱を用いた試験(以下、「圧力箱試験」)
 JIS A1414-3(建築用パネルの性能試験 第3部: 温湿度・水分量に関する試験)に準ずる。
- b)新たに導入された大型送風散水試験装置を用いた試験 (以下、「送風散水試験」) – 上記 JIS に規定された圧 力とほぼ等価と評価される風速による。

の双方の防水性能試験を同一試験体で実施することによ り、双方の試験方法による挙動の差異および試験結果の差 異を比較した。

ここで、様々な試験方法(装置)の違いと進化をあらた めて表1にまとめる。左から右に試験装置は大掛かりとな り、より現象(風雨)の再現性が増しており、これすなわ ち試験方法(装置)の進化を示している。

表1 試験方法(装置)の違いと進化

試験装置および試験方法の概要

試験装置および試験方法の概要および差異を表2に示す。

表2 試験装置および試験方法の概要および差異

ここで、「圧力箱試験」装置では、圧力箱内での静圧(一 定圧、定常圧)状態において、水噴霧ノズルから噴出速度 なりの水滴噴霧がなされるのに対し、「送風散水試験」装 置では送風機吹出口からの気流(風)が直接試験体に衝突、 試験体表層面における動圧状態が再現されると共に、水滴 (雨)も風速に応じた速度および運動エネルギーを保持し た状態にて直接試験体に衝突することにより、より実際の 風雨に近い状態が再現されている。

また、「圧力箱試験」の圧力箱内静圧数値から「送風散 水試験」の風速数値への換算式には、 $P = \frac{\rho V^2}{2}$ ※圧力: $P [Pa]、風速: V [m/sec.]、空気密度: <math>\rho [kg/m^3]$ を用い、 ここでは空気密度 : ρ [kg/m²] の数値は、気温≒ 20[℃] 程 度を想定した数値として、1.2 としている。

上記換算式はベルヌーイの定理の基づき、空気(風、気流) の運動エネルギーが壁面に衝突した際に、圧力(ポテンシャ ルエネルギー)に完全に変換されることを前提とした理論 式であるが、「送風散水試験」装置においては、本理論式 の適用妥当性に関しても実験的に検証されている。実風出 力の風速を実測した上で試験体表層面位置の圧力(動圧) を実測し、圧力(動圧)実測値が上記換算式とほぼ近似す ることが確認されている。

図1 「送風散水試験」装置概要

写真1 「送風散水試験」装置 送風機側

写真3 試験体設置用チャンバー

写真2 「送風散水試験」装置 試験体設置側

写真4 チャンバー裏面人通口ハッチ

試験体の概要

試験体の概要を図2および写真5,6に示す。

写真5 試験体 屋外側

写真6 試験体 屋内側

り、屋内側への漏水の状態を目視観察できる仕様とした。

また、実建築物の角波のおさまりでは土台水切りが設置

される部位(角波下部)には樋状の部材を設け、重ね部へ

の浸入水および屋内側への漏水を樋状部材から回収し、そ

1つの試験体を「圧力箱試験」、「送風散水試験」双方に

適用したため、試験体によるバラツキはない。

試験体の角波は縦貼り、横胴縁は @606mm、座金パッ キン付き六角頭ドリルねじ φ 5 × 35mm にて一山飛ばし で胴縁に留めつける。四周はシーリング処理し評価対象外 とする。材の配置は中央材から左右に 3 枚を均等割付け、 角波の重ね部 (縦継ぎ目)は縦に 2 本配置される。屋内側 には下地ボードを模したアクリル板を設置することによ

試験条件

試験条件を表3に示す。

表3 試験条件

の水量を計測した。

今回「送風散水試験」装置に試験体を設置し試験稼動さ せた際、角波重ね部からの漏気が無視できない漏気量であ ることが確認された。角波の重ね部は鋼板が重なっている だけの構造なので、内外気圧差が存在すると重ね部からは 漏気が発生する。

「圧力箱試験」装置では漏気が発生しても b1 エリアは完 全開放された空間であるため、b1 は大気圧となる。圧力箱 内の P の圧を載荷すると、内外気圧差: a1 - b1 = △ P となる。 一方、「送風散水試験」装置ではチャンバーハッチを閉 めた際、チャンバーが完全気密設計となっているため a3 と b3 との気圧差がほぼ 0 となることが確認された。実際 には脈動に対する漏気反応のタイムラグがあるため完全に 0 とはならず脈動に追従するように気圧差は±0付近を変 動する。

また、ハッチを開放した場合では脈動の影響は全く0で はないものの、b2 はほぼ大気圧となった。

チャンバーハッチ[開]および[閉]それぞれの外圧、 内圧の測定値、また外圧 - 内圧の計算値をグラフ1に示す。

グラフ1 外圧、内圧の測定値、また外圧 - 内圧の計算値

現実の角波外壁を用いた建築物が風雨を受ける時の屋外 - 屋内の気圧差を想定した場合、上記試験条件の中では「圧 力箱試験」あるいは「送風散水試験」チャンバーハッチ[開] の状態が実現象に近いと考えられる。

試験結果

試験結果を表4に示す。

「圧力箱試験」および「送風散水試験」チャンバーハッ チ[開]ではステップ1から既に流れ出しが観察され、ス テップ3から吹き出しが観察される一方、「送風散水試験」 チャンバーハッチ[閉]ではステップ2においても漏水現 象は観察されず、またステップ4においても吹き出しは観 察されなかった。

一方、排水量に関しては「送風散水試験」チャンバーハッ チ[閉]が最も多い結果となった。 考察

図3 角波の重ね部における水の挙動

屋外側より①から浸入した水は②の重ね部内でその多く が下方に落下し、実建築物では土台水切りを介し排出され る。今回の実験では樋状の部材を設けこの水を回収し、排 水量を測定した。実建築物の土台水切りおさまりと今回の 実験の樋状部材を図4に示す。重ね部に浸入した水②の一 部は状況により③に到達し、屋内側へのにじみ出しとなる。 さらに③の水が累積すると④の流れ出しに至り、またこの 噴出に勢いがある場合は⑤の吹き出し、水滴の飛散に至る。

今回の実験では「圧力箱試験」および「送風散水試験」チャンバーハッチ[開]ではステップ1から既に④の流れ出しが発生し、ステップ3からは⑤の吹き出しまでに至っている一方、「送風散水試験」チャンバーハッチ[閉]ではステップ2までは③以降の漏水現象すら発生していない。この結果は内外圧力差の有無に起因する差異と考えられる。

一方、内外圧力差がほぼ同等の「圧力箱試験」と「送風 散水試験」チャンバーハッチ[開]との比較では、結果の 差異はほぼない。つまり本稿冒頭に示した「動圧の影響」は、 今回の角波の試験においては明確には観察されなかった。

さらに排水量に着目した場合、「送風散水試験」チャン バーハッチ[閉]が最も排水量が多い。雨水が風速相当の 速度および運動エネルギーを保持しつつ角波外壁表面に衝 突する場合においては、②の浸入水量が多くなっている可 能性が考えられる。さらに内外圧力差がほとんどない場合 ではそれらの浸入水は上記のように漏水に至らずに、重ね 部内で下方落下し排水されるため、結果的に排水量が多く なったものと考えられる。

図4 実建築物の土台水切りおさまりと今回の実験の樋状部材

まとめ

「角波」外壁の防水性能に関し、

- a) 従来の圧力箱を用いた試験 JIS 規格に準ずる。
- b)新たに導入された大型送風散水試験装置を用いた 試験 – 上記 JIS に規定された圧力とほぼ等価と評 価される風速による。

双方の比較試験を実施した。

「角波」のように重ね部からの漏気が発生する外壁にお いては、実際の風雨に近い状態を再現した「送風散水試験」 チャンバーハッチ[開]と、「圧力箱試験」とでは結果はほ ぼ同等となり、両者に明確な差異は観察されなかった。

一方、「送風散水試験」チャンバーハッチ[閉]のように 内外気圧差をほぼ0とする条件においては、漏水はかなり 軽減されることが確認された。

※1一般財団法人 建材試験センター ウェブサイト「大型送風散水試 験装置 - 実風を用いた水密・耐風圧 -」 https://www.jtccm.or.jp/Portals/0/images/pdf/hinsei/ document12.pdf